
westgate-works.com

Fractal LED tutorial

This tutorial covers some of the fabrication of the Dr. Livingston sculpture - including how the fractal
head was made, but particularly the replacement of the low wattage light bulb in the fractal head with
LED lights.

The Dr. Livingstone sculpture body was fabricated using ferrocement which is covered in detail in
other tutorials that can be viewed here:
 http://www.westgate-works.com/efiles/etutorial.html

The fractal head for this sculpture was made of thin slices of natural stone originally designed for
making 35mm slides viewable in a projector. The sculpture stones were salvaged from the scraps left
over . These slides and stones were inherited by my father and then myself from the person that
actually made the natural stone slides – can't remember his name. You can view some of the stone
slides here:
http://www.westgate-works.com/efiles/egodstone.html

This shows the expanded metal armature that was used for applying
cement mortar and colored cement to make the sculpture.

This shows the finished sculpture body mounted upside-down on a work
table. The final coats of colored cement have been applied.

1

http://www.westgate-works.com/
http://www.westgate-works.com/efiles/egodstone.html
http://www.westgate-works.com/efiles/etutorial.html

This shows the completed sculpture in it's proper orientation with the low
wattage bulb installed to fit inside the head.

The on/off switch is part of the bulb holder and the chain hangs through a
hole in the body of the sculpture - accessible but out of sight. The power
cord for the light feeds through one of the legs.

The fractal head was made of thin slices of natural stone held in a copper
wire frame. The copper wire frame took a few tries before it worked
because of soldering at the joints. The solution was to use solder that
melted at four different temperatures. By using the hottest solder first, the
later soldering would not melt the previous work.

The shape of the head was somewhat dependent on the size and shape of
the stones that were available. This often required finding a stone that
would fill a spot and then building the frame to match, or vise-versa. There
was a lot of lapidary cutting and grinding involved to get things to come
together.

Both the shaped stone and matching opening were labeled to keep things
organized, as can be seen from the board with the stones taped in
numerical order.

This shows the process of gluing the stones in the frame. Originally
bronze colored latex caulk was used, but somewhere into the process
the stones began falling out of the frame. The culprit was that the
latex caulk was reacting with the bare copper and would peel off. All
of the stones had to be removed - and kept organized - while painting
the entire frame with an oil base paint. As an additional precaution,
an oil based caulk was used.

After all of the stones were in place, additional caulking was needed
to fill small voids and cracks. The edges of each stone were masked,
and caulk was used to finish the joints and make it as waterproof as
possible.

2

After the caulk dried, the masking tape was remove to reveal nice
clean lines, as can be seen at the bottom of this image.

The caulking has survived over 6 years, although it is not waterproof
as expected, but is tough and has held the stones in place very well.

This is the finished sculpture in it's original form with the fluorescent light
installed in the head.

Requirements for LED implementation

The low wattage fluorescent light was never a satisfactory solution, and having a light that turned on
and off gradually was always the desired implementation. Modifying the sculpture to use Light
Emitting Diodes (LEDs) was not an option, for several reasons, until very recently.

An electronics engineer friend suggested looking into the Raspberry Pi micro controller as a means
for controlling LED lights. Doing research on the web led to learning about the similar Arduino micro
controller, which could be powered on and off without problems, unlike the much more versatile and
powerful Raspberry Pi micro controller.

Several possible Arduino solutions were identified through researching the web. Most of these
solutions required building electronic circuits with chips, resistors and whatnot, and increased the
complexity of a solution many times over. Several ready-made solutions were discovered . The
simplest was obsolete and no longer available. The Rainbowduino and accompanying LED shield (a
printed circuit board (PCB) that fits on the micro controller PCB) from http://www.seeedstudio.com/
was eventually chosen because it is capable of controlling 192 individual LED's, which is more than
are required in the fractal head. However, Seeed Studio does not provide current, or complete
documentation for this product and it was particularly designed for Red Green Blue (RGB) LED
cubes, but it was still the best solution found for this sculpture. To learn how to use it required a lot of
web research, and early on it was decided to not be in a hurry because this technology presented a
steep learning curve.

Light Emitting Diodes (LED's) offer options not available with other types of lighting. The original
plan was to have the light gradually come on when a person approached the sculpture and gradually
dim afterwards, but this is difficult to do with fluorescent or incandescent lights, other than manually.

3

http://www.seeedstudio.com/

LED's can be dimmed with a pulse width controller which turns them on and off very quickly, making
it possible to dim the lights or actually blink the lights or make them twinkle,

It was decided to control the LED's by sensing motion near the sculpture. When motion is sensed, the
LED's will randomly start from dim and get brighter the longer motion is present until (if enough
time) they are all turned on to full brightness. During this ramp up, LED's are turned on, but not off,
so those at a lesser brightness will stay that way until (or if) they are randomly re-set. When motion
stops, the reverse is done until all LED's are turned off . It seemed that it would be much more
interesting if the lights gradually blinked up and actually twinkled while a person was near and then
gradually blinked down to off when no more motion was detected.

Several methods for sensing motion with the Arduino were investigated. The ones that would work
with the sculpture were Photocells (CDs) and Passive Infra Red (PIR) Sensors. Other sensors were too
bulky and could not be incorporated into the sculpture or had other disadvantages.

Photocells only work in daylight, as they change resistance depending on the Infra Red light they are
receiving. PIR sensors only work in low light or darkness because they sense changes in Infra Red
light levels between two sensors and bright daylight saturates the sensors so they do not work
properly.

Installing the photocell sensors was simple because they are very small and almost indestructible and
could be unobtrusively mounted on the fractal head surface. The PIR sensors presented a problem
because the small sensor element is mounted on a printed PCB. The sensor element is about the same
size as the photocell sensor. An attempt was made to separate the sensor unit from the PCB and
connect it with very small wires so that the sensors could be mounted the same as the photocell
sensors. After much testing it was determined that they would only work dependably as manufactured.
The eventual solution was to support 3 PIR senor PCBs under the head of the sculpture and have them
peek out between the legs so that they would not be too visible, but still have some capacity to sense
motion.

Hardware technical details
The Rainbowduino board (http://www.seeedstudio.com/depot/Rainbowduino-LED-driver-platform-
Atmega-328-p-371.html) has a built in USB port for power and programming, and a 5 mm 5 volt
power socket for stand-alone use and a switch to choose between the two power modes. The Atmega
328 processor includes 32 kilobytes of programmable flash memory, and 2 kilobytes of EPROM
memory. The Rainbowduino board has drivers for 192 LEDs that can be individually set at 16
different levels of brightness.

The board has 8 labeled connectors without a header (shown below), but there is no documentation to
be found other than through Lady Google. A lot of searching turned up the information that these pins
can be used for external control and consist of Arduino pin numbers A0 through A3, A6, A7, D2 and
D3. Pins A0 through A3 are standard analog pins that can also be used as input/output digital pins.
Pins A6 and A7 are floating analog pins that can only be used for analog input - not output, because
they are connected directly to the internal Analog Digital Converter. These two pins are only available
on surface mounted versions of the Atmega 328 processor. Pins D2 and D3 are digital pins normally
used as interrupts. They cannot be pulled HIGH, but can be pulled LOW. Pin D3 is a Pulse Width
Modulation (PWM) pin. An 8 pin female angle header was installed and the pins are used as follows:

4

http://www.seeedstudio.com/depot/Rainbowduino-LED-driver-platform-Atmega-328-p-371.html
http://www.seeedstudio.com/depot/Rainbowduino-LED-driver-platform-Atmega-328-p-371.html

A0 - CDs sensor with 10K Ohm resistor to a ground pin on the Rainbowduino PCB
A1 - + 5V for CDs sensor
A2 - + 5V for PIR sensors
A3 - PIR 1 sensor
A6 - PIR 2 sensor
A7 - PIR 3 sensor
D2 - Gnd for PIR sensors
D3 - not used

8 connectors at bottom of this top view 8 connectors at left of this bottom view

The LED shield comes with headers that need to be soldered in
place, and a full compliment of LED's.
(http://www.seeedstudio.com/wiki/Rainbowduino_Extension_Board
_v0.9b)

The LED connections are nicely identified individually on the
board, but there is no indication as to which side of the board the
headers are to be installed, nor is there any indication of the proper
direction to install the shield on the Rainbowduino board, but it only
works one way. Looking through the PCB with a bright light, the
copper traces can be seen and comparing it to the labels on the
Rainbowduino board provides the necessary orientation
information. A marker pen makes it easy to keep oriented after that.

For testing purposes 120 LED's were installed on the shield by
folding and crimping the ends and inserting them in the holes so
they could be removed later.

This image shows the LEDs all on and the 3 PIR PCBs are mounted
on the shield with their sensors connected by wires – this was later
abandoned as not workable.

The breadboard was used here to test one Photocell. The final setup
uses 6 photocells wired in series to attain more accuracy. Small
holes were drilled around the head through the stone panes for the
photocell wires.

5

http://www.seeedstudio.com/wiki/Rainbowduino_Extension_Board_v0.9b
http://www.seeedstudio.com/wiki/Rainbowduino_Extension_Board_v0.9b

Originally 3mm bright warm white LEDs were purchased, but did
not seem bright enough, and were replaced with 5mm LEDs.

Fiddling around with an illumined LED inside the head showed that
much of the light was being absorbed by the dark area in front of
the LEDs. To solve this, each LED was inserted in a short piece of
vinyl tubing as a standoff and a cupped reflective sequin was glued
to the end of the tubing to reflect the light, which worked better.

All 120 LEDs were assembled like this.

A couple of the stone panes had to be removed for access, as shown
here.

The LEDs were glued inside the head at each apex or joining of
several stone panes. A clear silicone caulk was used and the wires
were taped to hold the LEDs in place until the caulk dried, which
was a slow process. Only a few LEDs could be put in place each
day.

The wires were relocated inside before replacing the stone panes.

This soldering station setup had holes drilled for holding each LED
assembly for soldering the lead wires to it. A 3.5 volt DC power
supply with a resistor was used to light each LED during soldering
and again when the LED was glued in the head to ensure that no
mistakes in wiring or placement happened.

The two upright wood pieces were designed for holding the shield
during soldering, but proved to be useless.

This shows that all of the LEDs have been glued in place and the
wires cut to length for soldering to the shield.

The wires are salvaged from an 80 pair hard drive flat ribbon cable
and are very small and fragile. To identify polarity for each pair, the
cable was rolled up and a black marker pen was used to color one
edge. Then two wires were peeled off to make a pair.

The two white wires shown are the connectors to the 6 photocell
sensors and are soldered to a 2-pin male plug.

6

This shows all of the wires soldered to the LED shield. The end of
each wire had to be stripped and pre-soldered to get the strands to go
into the holes on the shield. Once inserted, they were soldered from
the other side of the shield.

All remaining positions have LEDs soldered on the shield to
increase the amount of light, except the end rows, which needed to
be clear for mounting the shield in the head. One of the PVC
mounting strips with a groove cut in it for holding the shield is
visible. These PVC strips were glued in place.

This shows the shield with the Rainbowduino installed and in place
in the head.

The two white wires for the photocells are connected to pins A0 &
A1 of the 8 pin angle header.

The PIR sensor connector fits the remaining pins on the header.

This shows the upper portion of the sculpture body that the fractal
head fits over. A metal plate is fitted into the bottom of the cavity
and the 3 PIR sensors are supported underneath. The PIR wiring
feeds through to the connector. The 9 volt power cord uses the
existing tube that feeds from the bottom of the sculpture.

This shows the fractal head on the sculpture body with the
connectors in place, ready to be fitted over the sculpture body.

7

These three images show the fractal head in operation – morning, noon and night.

Programming the Rainbowduino
using LINUX Mint 13

Details of using Linux Mint 13 are not included because it is beyond the scope of this tutorial.
Other operating systems will have different requirements but similar processes.

The Rainbowduino has an Arduino boot-loader already installed that makes it easy to program using
the Integrated Development Environment (IDE) program and a USB connection.

The Arduino IDE for Linux Mint 13 is included in the distribution's program library and can be
installed from the Software Manger or the Package Manager or by keying in “Arduino IDE” In the
Menu search box and installing from there.

Opening the Arduino IDE displays this window.

Programs in the IDE are called “Sketches” and are stored (in Linux
Mint 13) in a Sketchbook folder located at userhome/sketchbook.

The Rainbowduino programming library needs to be
downloaded from this web page
http://www.seeedstudio.com/wiki/Rainbowduino_v3.0 .

Under the “RESOURCES” heading at the bottom,
select “Rainbowduino3.0 Library for Arduino 023” to
download the PDF file.

The downloaded “Rainbowduino3.0_Library.zip” contains
these files and folders when unzipped.

8

http://www.seeedstudio.com/wiki/Rainbowduino_v3.0

The Rainbowduino programming library does not include a function for lighting all of the LEDs and
is required for this project. Therefore it needed to be added BEFORE importing the Rainbowduino
library into the Arduino IDE libraries, requiring that the changes had to be made in the zipped library.

To ensure that the modified code would compile, Rainbowduino.cpp was opened in a text editor and
copied and pasted into the IDE to make the following changes;

In the IDE, the following Rainbowduino.cpp program code was copied :

//blank all pixels

void Rainbowduino::blankDisplay(void)
{
 for(unsigned char x=0;x<=7;x++)
 {
 for(unsigned char y=0;y<=7;y++)
 {
 frameBuffer[0][x][y] = 0x00;
 frameBuffer[1][x][y] = 0x00;
 frameBuffer[2][x][y] = 0x00;
 }
 }
}

and then pasted just below where it was copied from (so that the copy could be changed).
In the pasted copy of the code;

“//blank all pixels ” was changed to “//turn on all pixels ”.
“void Rainbowduino::blankDisplay(void)” was changed to “void Rainbowduino::allonDisplay(void)”.
All three instances of “0x00” were changed to “0xFF”.

The code was compiled to be sure it was O.K.
All of the modified code from the IDE was copied back into the text editor (replacing the original
code). The modified Rainbowduino.cpp was saved with the text editor (writing over the existing file
in the library). These changes added the RB.allonDisplay() function to the Rainbowduino.cpp code.

All of the code in the IDE was cleared.

Rainbowduino.h was opened in the text editor and all of the code was copied and pasted into the IDE
for making the following changes;

In the IDE program, that had the Rainbowduino.h program code;
The code “void blankDisplay(void);” was copied and then pasted just below where it was copied (so
that it could be changed).
“void blankDisplay(void)” was changed to “void allonDisplay(void);”
The code was compiled to be sure it was O.K.
All of the modified code from the IDE was copied back into the text editor (to replace the original
code). The modified Rainbowduino.h was saved with the text editor (writing over the existing file in
the library). These changes added the RB.allonDisplay() function to Rainbowduino.h code.

To add the modified “Rainbowduino3.0_Library.zip” to the IDE library, this web page was used as a

9

guide: http://arduino.cc/en/Guide/Libraries The Arduino libraries in Linux Mint 13 are located in
usr/share/arduino/libraries.

Before uploading a program (sketch) to the Rainbowduino board via the USB connection, the IDE
required selecting an Arduino board. This was done by using the menu item Tools > Board > and
then selecting Duemilanova W/ ATmega328.

The process of writing and testing the code (Sketch) for this fractal head was several months long with
many changes.

This is the complete working code as uploaded into the Rainbowduino flash memory and is published
here in the hope that it may be of some use to others.

//
// PIR sensor code from http: //playground.arduino.cc/Code/PIRsense
// CDs sensor code from https: //learn.adafruit.com/photocells
// LED code Rainbowduino v3.0 Library examples Moodlamp - Rb.setPixel(XYZ)
// 3 PIR sensors are read sequentially.
// PIR Sensor PIR-HC-SR501 has an internal process time of 1 second.
// PIR sensor sensitivity increases with less light and lower temperature
// CDs sensor sensitivity increases with more light
// 6 CDs sensors connected in series between +5 Volts and Pin A0.
// Pin A0 connected with 10K ohm resistor to ground.
// CDs sensors calibrate to about: Dark~ 0 Full sunlight ~ 1000.
// 10 LED's are processed together.
// LED lights gradually randomly blink up - to all on, taking 3 seconds.
// LED lights randomly twinkle while motion is still being detected.
// LED lights gradually randomly blink down at end of motion - to all off.
// Rainbowduino shield has 120 LED's wired to fractal head vertices.
// Remaining on-board LED positions are populated for more light
//
// Rainbowduino pins used:
// A0 - CDs sensor with 10K ohm resistor to a ground pin on the PCB
// A1 - + 5V for CDs sensor - CDs Vcc
// A2 - + 5V for PIR sensors - PIR Vcc
// A3 - PIR 1 sensor
// A6 - PIR 2 sensor
// A7 - PIR 3 sensor
// D2 - Gnd for PIR sensors
// D3 - not used

#include <Rainbowduino.h> // Include the modified Rainbowduino library

// ================= Program controls =================
// CDs sensors are made active above early evening light level and
// PIR sensors are made active 10 points below this same changeover level
// to reduce chance of having both CDs and PIR running at same time
 int CDslevel = 400;
 int PIRlevel = 390;

// Rapid light change across changeover value allows runaway active

10

http://arduino.cc/en/Guide/Libraries

// process between PIR and CDs and is resolved by resetting ambiant
// light level to longer than a normal ON time
 int reset = 50;
 int loopCount = 1;

// Trigger level for CDs motion sensing needs to be above voltage jitter level
// 5 allows sensing at about 4 feet in daylight, less as it gets darker.
// In bright light voltage jitter increases so this value is increased to 8.
int CDsTrigger = 5;

// The amount of milliseconds the sensors have to be low
// before we assume all motion has stopped.
// During this time blinkUp() uses about 3 seconds - so this makes 6 seconds total
 long unsigned int pause = 3000;

 int AmbientCDs; // Ambient CDs reading
 int CDsVal; // Current CDs reading
 int pir1; // PIR 1 value
 int pir2; // PIR 2 value
 int pir3; // PIR 3 value
 int pirPin; // PIR combined value
 int j; // Microseconds delay between each LED brightness change
 int w; // Count 0-9 for LED x & y array
 int x[10], y[10]; // Two sets of 10 random numbers
 long Rseed = 1; // Counter for randomseed
 int z; // LED brightness

//the time when the sensor outputs a low impulse
 long unsigned int PIRlowIn;
 long unsigned int CDslowIn;
 boolean PIRlockLow = true; // Flip-Flop for PIR
 boolean PIRtakeLowTime; // Delay time for PIR
 boolean CDslockLow = true; // Flip-Flop for CDs
 boolean CDstakeLowTime; // Delay time for CDs

void setup()
{
 Rb.init(); //initialize Rainbowduino driver
// Serial.begin(9600); // Debug

 pinMode(A1, OUTPUT); // CDs Vcc
 digitalWrite(A1, HIGH); // CDs Vcc
 pinMode(A2, OUTPUT); // PIR Vcc
 digitalWrite(A2, HIGH); // PIR Vcc
 pinMode(2, OUTPUT); // PIR Gnd
 digitalWrite(2, LOW); // PIR Gnd

 AmbientCDs = (analogRead(A0)); // Start ambient CDs light level
}

void loop() // MAIN loop

11

{
 CDsVal = (analogRead(A0)); // Read CDs sensors

 if (CDsVal > 600) // Adjust trigger for bright light
 { CDsTrigger=8; }
 else
 { CDsTrigger=5; }

/* Debug
 Serial.print(AmbientCDs);
 Serial.print(" = ");
 Serial.print(CDsVal);
 Serial.print(" loop = ");
 Serial.println(loopCount);
*/

 loopCount++;
 if (loopCount==reset) // Reset ambient light level to avoid runaway
 {
 AmbientCDs=CDsVal;
 loopCount=1;
 }

 if (AmbientCDs>CDslevel)
 {
 CDsSense();
 }

 if (AmbientCDs<PIRlevel)
 {
 PIRsense();
 }
} // =========== END OF MAIN LOOP ===============

int CDsSense() // CDs sensor function
 {
 /* Debug
 Serial.print(AmbientCDs<CDsVal-10);
 Serial.print(" = Ambient-10 compare CDsVal+10 = ");
 Serial.print(AmbientCDs>CDsVal+10);
 Serial.print(" loop = ");
 Serial.println(loopCount);
 */
 if (AmbientCDs<CDsVal-CDsTrigger || AmbientCDs>CDsVal+CDsTrigger) // True/False 1 or 0
 {
 if(CDslockLow) //makes sure we wait for a transition to LOW before any further output is made
 {
 CDslockLow = false;
 blinkUp(); // Motion detected - turn it on
 Rb.allonDisplay();
 }

12

 CDstakeLowTime = true;

 }

 if(!CDslockLow) { j=50; Twinkle();}

 CDsVal = (analogRead(A0)); // Re-read CDs sensors

 if (!(AmbientCDs<CDsVal-CDsTrigger || AmbientCDs>CDsVal+CDsTrigger))
 {
 if(CDstakeLowTime){
 CDslowIn = millis(); //save the time of the transition from high to LOW
 CDstakeLowTime = false; //make sure this is only done at the start of a LOW phase
 }
 // If the sensor is low for more than the given pause,
 // we assume that no more motion is going to happen
 if(!CDslockLow && millis() - CDslowIn > pause)
 {
 // Makes sure this block of code is only executed again after
 // a new motion sequence has been detected
 CDslockLow = true;
 // Motion ended so blink down
 blinkDown();
 Rb.blankDisplay();
 AmbientCDs=(analogRead(A0)); // End of motion so reset ambient light level

 /* Debug
 Serial.print(AmbientCDs);
 Serial.print(" - Ambient reset - ");
 Serial.println(CDsVal);
 Serial.print("------ CDs - motion ended at ");
 Serial.print((millis() - pause)/1000);
 Serial.println(" sec");
 */

 }
 }
} //============== end of CDs Sensor function =============

int PIRsense() // PIR sensor function

{
 // Read 3 sensors and add together
 pir1 = (analogRead(A3));
 pir2 = (analogRead(A6));
 pir3 = (analogRead(A7));
 pirPin = (pir1 + pir2 + pir3);

/* Debug
 Serial.print(" PIR1= ");
 Serial.print(pir1);

13

 Serial.print(" PIR2= ");
 Serial.print(pir2);
 Serial.print(" PIR3= ");
 Serial.println(pir3);
 */
 if (pirPin>10) // Upped from 0 to 10 because of noise
 {
 if(PIRlockLow) //makes sure we wait for a transition to LOW before any further output is
made
 {
 PIRlockLow = false;
 // Motion detected so blink up
 /* Debug
 Serial.print("------ PIR motion detected at ");
 Serial.print((millis() - pause)/1000);
 Serial.println(" sec");
 */
 blinkUp();
 Rb.allonDisplay();
 }
 PIRtakeLowTime = true;
 }

 if(!PIRlockLow) { j=50; Twinkle();}
 // Read 3 sensors and add together
 pir1 = (analogRead(A3));
 pir2 = (analogRead(A6));
 pir3 = (analogRead(A7));
 pirPin = (pir1 + pir2 + pir3);

 if(pirPin==0)
 {
 if(PIRtakeLowTime){
 PIRlowIn = millis(); //save the time of the transition from high to LOW
 PIRtakeLowTime = false; //make sure this is only done at the start of a LOW phase
 }
 // If the sensor is low for more than the given pause,
 // we assume that no more motion is going to happen
 if(!PIRlockLow && millis() - PIRlowIn > pause)
 {
 // Makes sure this block of code is only executed again after
 // a new motion sequence has been detected
 PIRlockLow = true;
 // Motion ended so blink down
 blinkDown();
 Rb.blankDisplay();
 AmbientCDs=CDsVal; // Reset ambiant light level for CDs sensing

 /* Debug
 Serial.print(AmbientCDs);
 Serial.print(" - Ambient reset - ");

14

 Serial.println(CDsVal);
 Serial.print("------ PIR ----- motion ended at ");
 Serial.print((millis() - pause)/1000);
 Serial.println(" sec");
 */
 }
 }
 } //============ end of PIR Sensor function ==========

int blinkUp() // Reduce delay time to increase speed for Blink up
{
 j=95;
 while (j>0)
 {
 j=j-5;
 LEDsUp();
 }
} // ============ End Blink UP function ==============

int Twinkle()
{
 rand(); // Save random numbers
 for(z=100; z<255; z++) // Up Bright - z is LED brightness (0>255)
 {
 for (w=0; w<10; w++)// w count 0-9 for x & y arrays
 {
 Rb.setPixelXY(x[w],y[w],z,z,z);
 if (j==0){ return 0; } // Eliminates delay = 0 which occurs HERE
 delayMicroseconds(j);
 }
 }

 for(z=255; z>1000; z--) // DOWN dim - z is LED dimness (255>0)
 {
 for (w=0; w<10; w++) // w count 0-9 for x & y arrays
 {
 Rb.setPixelXY(x[w],y[w],z,z,z);
 if (j==0){ return 0; } // Eliminates delay = 0
 delayMicroseconds(j);
 }
 }
} // ============= End Twinkle function =============

int blinkDown()
{
 j=0;
 while (j<85)
 {
 j=j+5; // Increase delay time to reduce speed for Blink down
 LEDsDown();
 }

15

} // ============= End Blink Down function ===========

int rand() // Save random numbers for both x and y
 {

 if (Rseed == 4294967294)
 {Rseed =1;}

 Rseed++;
 randomSeed(Rseed);
 for (w=0; w<10; w++)
 {
 x[w]=random(8);
 y[w]=random(8);
 }
 } // =========== end Rand function ============

int LEDsUp()
{
 rand(); // Get random numbers
 for(z=0; z<255; z++) // Up Bright - z is LED brightness (0 - 255)
 {
 for (w=0; w<10; w++) // w count 0-9 for x & y arrays
 {
 Rb.setPixelXY(x[w],y[w],z,z,z);
 if (j==0){ return 0; } // Eliminates delay = 0
 delayMicroseconds(j);
 }
 }
} // ============== end LEDsUp function ==========
int LEDsDown()
{
 rand(); // Get random numbers
 for(z=255; z>0; z--) // DOWN dim - z is LED dimness (255 - 0)
 {
 for (w=0; w<10; w++) // w count 0-9 for x & y arrays
 {
 Rb.setPixelXY(x[w],y[w],z,z,z);
 if (j==0){ return 0; } // Eliminates delay = 0
 delayMicroseconds(j);
 }
 }
} // ============== end LEDsDown function ==========
int blinkDown()
{
 j=0;
 while (j<85)
 {
 j=j+5; // Increase delay time to reduce speed for Blink down
 LEDsDown();
 }

16

} // ============= End Blink Down function ===========

int rand() // Save random numbers for both x and y
 {

 if (Rseed == 4294967294)
 {Rseed =1;}

 Rseed++;
 randomSeed(Rseed);
 for (w=0; w<10; w++)
 {
 x[w]=random(8);
 y[w]=random(8);
 }
 } // =========== end Rand function ============

int LEDsUp()
{
 rand(); // Get random numbers
 for(z=0; z<255; z++) // Up Bright - z is LED brightness (0 - 255)
 {
 for (w=0; w<10; w++) // w count 0-9 for x & y arrays
 {
 Rb.setPixelXY(x[w],y[w],z,z,z);
 if (j==0){ return 0; } // Eliminates delay = 0
 delayMicroseconds(j);
 }
 }
} // ============== end LEDsUp function ==========
int LEDsDown()
{
 rand(); // Get random numbers
 for(z=255; z>0; z--) // DOWN dim - z is LED dimness (255 - 0)
 {
 for (w=0; w<10; w++) // w count 0-9 for x & y arrays
 {
 Rb.setPixelXY(x[w],y[w],z,z,z);
 if (j==0){ return 0; } // Eliminates delay = 0
 delayMicroseconds(j);
 }
 }
} // ============== end LEDsDown function ==========

A video of the working sculpture can be viewed on this web page:
http://www.westgate-works.com/efiles/esculpturev.html

17

http://www.westgate-works.com/efiles/esculpturev.html

